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Abstract

High-intensity interval training (HIIT) has become a popular fitness training

approach under both civilian and military settings. Consisting of brief and

intense exercise intervals, HIIT requires less time commitment yet is able to

produce the consistent targeted physical adaptations as conventional endur-

ance training. To effectively characterize and monitor HIIT-induced cellular

and molecular responses, a highly accessible yet comprehensive biomarker dis-

covery source is desirable. Both gene differential expression (DE) and gene set

(GS) analyses were conducted using hair follicle transcriptome established

from pre and postexercise subjects upon a 10-day HIIT program by RNA-Seq,

Comparing between pre and posttraining groups, differentially expressed pro-

tein coding genes were identified. To interpret the functional significance of

the DE results, a comprehensive GS analysis approach featuring multiple algo-

rithms was used to enrich gene ontology (GO) terms and KEGG pathways.

The GS analysis revealed enriched themes such as energy metabolism, cell pro-

liferation/growth/survival, muscle adaptations, and cytokine–cytokine interac-

tion, all of which have been previously proposed as HIIT responses.

Moreover, related cell signaling pathways were also measured. Specifically, G-

protein-mediated signal transduction, phosphatidylinositide 3-kinases (PI3K)

– protein kinase B (PKB) and Janus kinase (JAK) – Signal Transducer and

Activator of Transcription (STAT) signaling cascades were over-represented.

Additionally, the RNA-Seq analysis also identified several HIIT-responsive

microRNAs (miRNAs) that were involved in regulating hair follicle-specific

processes, such as miR-99a. For the first time, this study demonstrated that

both existing and new biomarkers like miRNA can be explored for HIIT using

the transcriptomic responses exhibited by the hair follicle.

Introduction

High-intensity interval training (HIIT) involves brief

repeated bouts of near maximal exercise (i.e., 80–100%
max heart rate and/or power output) interspersed with

short recovery periods and has been shown to elicit com-

parable health and performance benefits to those associ-

ated with conventional moderate-intensity continuous

training (MICT) (Gibala et al. 2012; Boyne et al. 2013).

Moreover, with its effectiveness in improving aerobic
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capacity and reduction in time-commitment, HIIT has

become a highly popular exercise training modality, with

its utility ranging from everyday fitness, rehabilitation

programs, to military physical training protocols (Boyne

et al. 2013; Gillen and Gibala 2014).

Understanding the spectrum of physiological and

biomolecular remodeling underlying the HIIT-responsive

cellular processes has been largely conducted using inva-

sive methods, including muscle biopsies, peripheral

blood, or other tissue samples in either human or rodent

models. While critical to characterizing HIIT-derived

adaptations directly from the tissues of interest, a mini-

mally invasive yet sensitive biomarker discovery source is

valuable for a comprehensive assessment of HIIT

responses in a timely fashion. Hair follicle controls hair

production and development through hair cycle, which

requires close cross-talk between cellular processes and

between different cell types, including follicular stem

cells, and fully differentiated cells like keratinocytes

(Stenn et al. 1994; Paus and Cotsarelis 1999; Stenn and

Paus 2001; Botchkarev and Paus 2003). As such, hair

follicle represents a versatile system that could reflect

physiological adaptations through numerous cellular and

molecular processes, thereby providing sources for bio-

marker discovery. Indeed, mammalian hair follicle was

already proposed as a biomarker discovery system for

various diseases and health conditions (Kim et al. 2006;

Paus et al. 2006; Choi et al. 2011; Roberts et al. 2014;

Maekawa et al. 2015). It has also been suggested as a

potential minimally-invasive model to study global

changes in gene expression with various modes of physi-

cal activity (Takahashi et al. 2017). Moreover, we have

previously demonstrated the viability of using rat whis-

ker hair follicle for transcriptomic biomarker discovery

in blast-induced mild traumatic brain injury (Zhang

et al. 2014). Therefore, existing and new transcriptomic

responses might be present in the hair follicles for HIIT,

making the system ideal for evaluating effectiveness of

the training regime.

A wide range of HIIT-associated cellular and molecular

processes that govern the corresponding physiological and

biochemical adaptations has been discovered. For exam-

ple, the brief yet intense muscular contraction occurring

with the training bouts induces alterations to the cell sig-

naling pathways controlling energy metabolism and cell

proliferation/growth, such as AMP-activated protein

kinase (AMPK) and phosphatidylinositide 3-kinases

(PI3K) – protein kinase B (PKB) pathways (Atherton

et al. 2005; Gibala 2009; Lu et al. 2015). Additionally, a

recent study demonstrated HIIT stimulates muscular

adaptation by altering fat and carbohydrate metabolic

pathways in skeletal muscle with elevated mitochondrial

function and changes in regulatory steps of metabolic and

signaling pathways (Perry et al. 2008). Improvement of

mitochondrial oxidative phosphorylation capacities were

observed upon completion of HIIT, resulting from

enhanced expression and activity of the mitochondrial

enzymes, including cytochrome c oxidase (COX) and

citrate synthase (CS) (Little et al. 2010; Ramos-Filho et al.

2015). As such, HIIT activates stress tolerance and cellular

survival mechanisms, including antioxidant defenses and

apoptosis, which can be regulated by mitogen-activated

protein kinase (MAPK) signal transduction cascades and

peroxisome proliferator-activated receptor (PPAR) path-

way (Gibala et al. 2012; Lu et al. 2015). In addition to

muscle adaptations, increased insulin sensitivity of the

liver and adipose tissue have been proposed as part of the

HIIT responses, which were also related to AMPK and

PI3K-PKB pathways (Marcinko et al. 2015). Furthermore,

immuno-inflammatory responses (IR) have also been clo-

sely related to HIIT (Zwetsloot et al. 2014; Cullen et al.

2016; Elmer et al. 2016; Kaspar et al. 2016). Taken

together, it is possible to use the aforementioned molecu-

lar biomarkers in combination with specific metabolic

parameters (such as heart rate, respiratory gas exchange,

mitochondrial function, and energy metabolism) to moni-

tor and study HIIT-induced effects (Gibala et al. 2012;

Marcinko et al. 2015).

This study examines the utility of human hair follicle

in exploring the transcriptomic responses upon a 2-week

HIIT regime. By conducting RNA-Seq using total RNA

library, we were able to explore transcripts from both

coding and microRNA (or miRNA) features. Based on

the RNA-Seq gene expression profiling, differentially

expressed genes were identified upon HIIT. Gene set (GS)

analyses were then carried out to depict the potential bio-

logical and physiological consequences to the gene differ-

ential expression (DE) results. This is the first study to

examine human hair follicle as a minimally invasive tran-

scriptome profiling tool to study adaptations associated

with short-term HIIT.

Materials and Methods

Participants and ethical approval

Four healthy recreationally active men (22–32 years of

age; body mass index 24.3 � 3.3 kg m–2, mean � stan-

dard deviation) were recruited from Canadian Armed

Forces (CAF) personnel through the Area Support Unit

Toronto, including the Canadian Forces Environmental

Medical Establishment (CFEME), and Defence Research

and Development Canada (DRDC), Toronto Research

Centre. The subjects completed a Physical Activity Readi-

ness Questionnaire, a standard medical exam and pro-

vided their written informed consent prior to their
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participation. The DRDC Human Research Ethics Com-

mittee and University of Toronto Research Ethics Board

approved the study.

Pretraining procedures

Preliminary testing was completed 1 week before the

first trial. All participants completed a standardized

maximal graded ramp test to exhaustion on an elec-

tronically braked cycle ergometer (Velotron Dynafit Pro,

RacerMate Inc., Seattle, WA) to determine whole-body

peak oxygen uptake (V̇O2peak test). Following a 1 min

warm-up at 50 W, the workload was increased at a rate

of 25 W every minute until the subject reached voli-

tional exhaustion or the cadence decreased below

60 rpm. Participants were fitted with an electronic heart

rate monitor (Polar WearLink+, Polar Electro Canada,

Lachine, QC) for determination of resting heart rate

and to measure heart rate during the exercise test.

Expired respiratory gases were measured continuously

by an automated breath-by-breath metabolic system

(MOXUS Modular Metabolic System, AEI Technologies,

Inc., Pittsburgh, PA) and the V̇O2peak value was deter-

mined by the maximum oxygen uptake over a 15 sec

period. The mean V̇O2peak and heart rate of the sub-

jects were 43.25 � 6.4 ml kg�1 min�1 (mean � stan-

dard deviation) and 178 � 14 bpm (mean � standard

deviation), respectively.

Training

All training was performed on the same cycle ergometer

as that used for baseline testing. A minimum of 48 h

and no more than 10 days following the initial V̇O2peak

test, participants began the 2-week HIIT regimen every

other day, with three sessions a week, completing six

HIIT sessions in 2 weeks. The protocol comprised a 3-

min warm up at 50 W followed by eight repeated 60-sec

intervals of cycling during session 1 and 2, 10 intervals

during session 3 and 4, and 12 intervals during session

5 and 6 at a workload corresponding to 100% of each

participant’s predetermined V̇O2peak, interspersed with

75-sec active recovery period at 50 W. Participants com-

pleted the protocol with a 3-min cool-down at 50 W.

Participants maintained the 60 rpm cadence throughout

the sessions.

Posttraining procedures

Minimum of 24 h, but no more than 48 h upon comple-

tion of the last HIIT session, participants performed a

posttraining V̇O2peak test. The V̇O2peak test protocol was

identical to that of the pretraining V̇O2peak test.

Sample collection and RNA extraction

Approximately 10 hair follicles at the vertex area of the

scalp were collected per participant before (pre-HIIT) and

upon completion (post-HIIT) of a 2-week HIIT regimen.

The sampled hair follicles were preserved by RNA later

solution (Qiagen, ON, Canada) for future batch analysis.

Total RNA was extracted for both RNA-Seq and quan-

titative PCR (qPCR) analyses. An RNeasy Micro Kit (Qia-

gen) was used for hair follicle RNA extraction. Briefly,

samples were homogenized using a sonicator (Thermo-

Fisher, ON, Canada) in a homogenization buffer prior to

the extraction and purification steps with the HiBind

RNA Spin Columns. The kit provided both homogeniza-

tion buffer and the spin columns. The concentration and

purity of the RNA extracts were determined using a

NanoDrop spectrophotometer (ThermoFisher); and the

integrity was determined as RNA integrity number (RIN)

on a Bioanalyzer (Agilent Technologies, ON, Canada).

RNA samples with the minimum RIN of seven were used

for further analyses.

RNA-Seq

Total RNA libraries were prepared using Illumina TruSeq

total RNA library prep kit (Illumina, BC, Canada) with

Ribo-Zero ribosomal RNA (rRNA) depletion kit (Illu-

mina) following manufacturer’s instruction. All resulting

libraries were checked for size and concentration using

Bioanalyzer (Agilent Technologies) and Qubit (Thermo

Fisher Scientific, ON, Canada), respectively. Sequencing

runs were performed on a MiSeq instrument (Illumina)

with the pair-ended sequencing kit (Illumina). To achieve

the maximum sequencing depth available, individual runs

were carried out for each sample instead of multiplexing.

All raw data were deposited to short reads archive (SRA)

database as BioProject (https://www.ncbi.nlm.nih.gov/bio

project/, BioProject ID: PRJNA396030).

RNA-Seq data preprocessing and gene
differential expression (DE) analysis

The raw sequencing reads from all the samples were

aligned to the human genome (release version hg19)

using TopHat (Trapnell et al. 2009) through Illumina’s

BaseSpace cloud service (Illumina). Prior to read count-

ing, software samtools (Li et al. 2009) was used to sort

the bam files resulted from the sequence alignment by the

name of the genome features. Reads were then counted

for all the genomic features using HTseq-count (Anders

et al. 2015) with the annotation file corresponding to the

reference genome version. With the rest settings being

default, feature type, counting mode and stranded were
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set to “gene,” “intersection-nonempty,” and “reverse,”

respectively. The raw read counts were then filtered and

normalized using the voom method (Law et al. 2014)

through the R package limma (Ritchie et al. 2015).

The R package limma (Ritchie et al. 2015) was also

used for gene differential expression (DE) analysis. Gener-

ally, statistical analysis was based on linear model fitting

with empirical Bayesian test. The empirical Bayesian test

p values were corrected using FDR (false discovery rate)

with an alpha value set to 0.05. According to the scope of

this study, genome features under the categories of pro-

tein coding and miRNA (microRNA) were extracted for

further analysis.

Quantitative PCR

qPCR was used to confirm the DE results from RNA-Seq

analysis. A subset of the genes that showed DE signals

were used for qPCR validation (see Table 1 for details),

with tubulin alpha 1a (tuba1a) and let-7a used as the

housekeeping genes, which exhibited a consistent expres-

sion level in both groups. All primers were designed using

the Primer-BLAST tool from NCBI (http://www.ncbi.nlm.

nih.gov/tools/primer-blast/) and their sequence can be

found in Table 1. For mRNAs, cDNA was synthesized

from the high-quality total RNA using a QuantiTect Rev-

erse Transcription Kit (Qiagen).

For miRNA amplification, cDNA was synthesized

with the additional poly-adynlation step using a Poly

(A) Polymerase Tailing Kit (Epicentre Technologies, IL).

Briefly, 200 ng high-quality total RNA was the used in

the poly(A) tailing reaction for each sample with 1 U

of poly(A) polymerase associated with the kit. The reac-

tions were carried out at 37°C for 30 min. The result-

ing RNA samples were subjected to cDNA synthesis

using an RT primer specifically targeting poly-adeny-

lated RNA.

Prior to the quantification runs, all primer sets were

tested and optimized using cDNA samples pooled from

both groups for an amplification efficiency between 90

and 110% and a linear regression coefficient between 0.9

and 1.0 for standard curves. A CFX thermocycler

(BioRad, Canada) was used for qPCR amplification with

GoTaq qPCR master mix (Promega, WI). The amplifica-

tion process was programmed as following: 95°C for

3 min, 40 cycles of 95°C for 15 sec and 58–62°C for

1 min. A dissociation curve was generated over the tem-

perature range of 60–95°C immediately after each qPCR

reaction, to confirm single product amplification. Opti-

mized qPCR conditions for each gene can also be viewed

in Table 1. Raw data acquisition was carried out using

the CFX manager (Biorad, Canada) software. Student’s t-

test was used for statistical analysis for the qPCR amplifi-

cation using the JMP SAS 9.0 software (SAS, NC).

Table 1. Primer sequences for the genes analyzed using qPCR with optimized conditions including annealing temperature and primer concen-

tration. Key functions are also listed for each gene. F: forward; R: reverse.

Gene Main function Sequence

Annealing temperature

(°C)

Primer concentration

(nmol L�1)

krt78 Keratin protein F: 50-TGGTCCTCAAGAAGGATGTGG-30 60 350

R: 50-GATGCTGCTGAAGTCCAGGT-30 350

slc2a5 Glucose transport F: 50-TATCGGATCCCTCCTGGTCG-30 60 350

R: 50-CACGTTGGAAGATACACCTGC-30 350

rilpl2 Lysosome morphology F: 50-GTGCTACAAGAGTGGCCTGAT-30 60 300

R: 50-AGCCTTACTTGTGGCCTTGG-30 300

gpr128 Cell signaling F: 50-CTGGAAACCCTGGAAAAGCA-30 60 300

R: 50-ATGGCAACTTTCTTTGCCTCA-30 300

Tuba1a Housekeeping gene F: 50-GAAGCAGCAACCATGCGTGA-30 60 300

R: 50-ATCTCCTCCCCCAATGGTCTT-30 300

let-7a Housekeeping gene F: 50-AGCAGTGAGGTAGTAGGT-30 60 250

R: 50-
CCAGTTTTTTTTTTTTTTTAACTATACA-30

leg-7g Apoptosis F: 50-GCAGTGAGGTAGTAGTTTGTA-30 60 250

R: 50-GTCCAGTTTTTTTTTTTTTTTAACTG-30

miR-99a Keratinocyte

differentiation

F: 50-AGAACCCGTAGATCCGA-30 60 250

R: 50-CAGTTTTTTTTTTTTTTTCACAAGA-30

RT

primer

N/A 50-CAGGTCCAGTTTTTTTTTTTTTTTVN– 30
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Changes with a P value from Student’s t-test <0.05 were

considered statistically significant.

Gene set (GS) analysis

Gene ontology (GO) term and KEGG pathways (Ash-

burner et al. 2000; Luo and Brouwer 2013; Maekawa

et al. 2015) were used for GS analysis to further evaluate

the biological and functional significance of the DE sig-

nals discovered from RNA-Seq experiment. For GO term

analysis, biological processes (BP) and molecular func-

tions (MF) sets were assessed. In addition to GO term,

KEGG pathways provides both more functional insights

of the DE results and a detailed visual representation of

the HIIT-responsive pathways and processes. All GS

enrichment tests were carried out using the R package

piano (V€aremo et al. 2013).

To take the overall gene expression profile into

account, the gene level statistics (i.e., fold change/t-statis-

tics and P value) for the whole protein coding gene list

were used for the GS analysis. Firstly, the nondirectional

GS test uses the absolute value of gene level fold change

or t-statistics, and thus reveals the pathways that might

be regulated by HIIT based on the overall DE results.

Moreover, adding the directionality information present

in the gene level statistics (i.e., up and down regulation)

to the GS analysis provides a more detailed functional

analysis to the regulations on enriched pathways. Direc-

tional GS analyses feature distinct directional enrichment

and mixed directional enrichment. For the distinct direc-

tional test, with the opposite DE signals cancelling out,

significantly regulated gene sets can only be in one direc-

tion. On the other hand, enriched pathways can be regu-

lated in both directions in the mixed directional test if

the pathway contains subsets of genes show either one

direction from the DE results. For directional methods,

GS P values are calculated for both up and down

regulations.

This study utilized multiple GS enrichment algorithms

through a consensus score to minimize method bias. A

spectrum of GS tests was used, including both parametric

(i.e., Fisher’s combined probability, Stouffer’s test, Repor-

ter features test, and parametric analysis of gene set

enrichment [PAGE] test) (Fisher 1932; Stouffer et al.

1949; Kim and Volsky 2005; Patil and Nielsen 2005),

nonparametric methods (i.e., Tail strength test, Wilcoxon

rank-sum test, and gene set enrichment analysis [GSEA]

test) (Smyth 2005; Subramanian et al. 2005; Taylor and

Tibshirani 2006), as well as a “maxmean” method devel-

oped by Efron and Tibshirani (2007). For all eight enrich-

ment tests, null distribution was generated by a gene

sampling permutation (1000 times) approach. All GS level

P values were adjusted by FDR with an alpha value set at

0.05. All GO terms and KEGG pathways tested were

ranked for each enrichment test, with the median of the

ranks used as the consensus score of the gene sets.

The overall results of the GS analysis were visualized in

quadrant scatter plots and boxplots. For quadrant scatter

plots, the consensus scores were plotted against median

GS P value for the gene sets. Boxplots were used to show

the top ranked gene sets (consensus score cut-off: 15).

Selected key pathways were also graphically represented

with the corresponding DE results masked onto the figure

objects. All plots were generated using the R packages

pathview, reshape2, and ggplot2 (Wickham 2007, 2009;

Luo and Brouwer 2013), as part of the data analysis pipe-

line specifically developed for this study.

Results and Discussion

The advantage of HIIT resides in its relatively low time

commitment and equal, if not superior, effect to the con-

ventional endurance training, such as MICT (Little et al.

2010). Serving as the foundation of the physiological

adaptations, molecular biomarkers from the HIIT-respon-

sive biological and cellular events not only provide addi-

tional layers of measurable metrics to evaluate training

results, but also provide a tool for a comprehensive char-

acterization for the HIIT-derived adaptations. Moreover,

a wide range of HIIT-associated biological and cellular

events house various types of biomarkers, such as protein

factors and RNA transcripts derived from the correspond-

ing genes. Conventional approaches of assessing HIIT-

responsive biomarkers largely include direct examination

of various tissues of interest, such as blood and muscle

biopsy. Additionally, lab rodent models have been fre-

quently used to assess the organs that typically face chal-

lenging accessibility in human subjects upon HIIT, such

as the liver (Marcinko et al. 2015). A minimally invasive

transcriptomic biomarker system enables faster HIIT

response evaluation and characterization, with a possibil-

ity of extending our understanding on the training

scheme. Given the prior knowledge of being used as a

biomarker discovery system (Roberts et al. 2014; Zhang

et al. 2014; Maekawa et al. 2015), hair follicles were

used to explore the HIIT-responsive transcriptomic

biomarkers.

The RNA-Seq approach featured in this study was

designed to provide a snapshot of pre- and post-HIIT

scalp hair follicle transcriptomes, providing a first look at

the transcriptomic landscape under such conditions in

hair follicles. Sequencing reads alignment revealed tran-

scripts from both gene coding and noncoding genomic

features, confirming that the scalp hair follicles indeed

contain a rich amount of transcriptomic information.

Based on the gene expression profile presented by the
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normalized read counts, the hierarchical clustering analy-

sis exhibited great variance both within- and between-

individuals for pre- and post-HIIT (Fig. 1). The clustering

analysis also grouped genes with similar expression levels

together, revealing both low and high abundance gene

transcripts. Despite the high level of variance between

subjects pre- and post-HIIT, a comparison of expression

level between the two groups discovered 1463 genomic

features that were differentially expressed, of which 383

were protein coding genes. Volcano distribution was used

to visualize DE results for the protein coding genes

(Fig. 2A), showing 378 DE genes with a fold change equal

to or greater than 1.5. Examples included facilitated

glucose/fructose transporter (also known as solute carrier

family 2 member 5, or slc2a5), keratin 78 (krt78), and

G-protein-coupled receptor 128 (gpr128). It is worth noting

Figure 1. Heat map showing unsupervised hierarchical clustering analysis on the identified genomic features from pre- and post-HIIT subjects.
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that the RNAseq analysis also exhibited 66 differentially

expressed miRNAs, even without small RNA enrichment

steps during the library preparation procedure. As miR-

NAs regulate their mRNA targets via direct interaction

(Chen and Rajewsky 2007), the miRNAs identified in this

study might be part of the active miRNA:mRNA interac-

tion complexes. As such, we found that hair follicles

could indeed be used to reflect and explore the adjust-

ment on gene expression upon HIIT. The complete DE

results for protein coding genes can be view in Table S1

in supplementary materials.

To verify the RNA-Seq DE results, qPCR was con-

ducted on a selection of both DE protein coding genes

and miRNAs. A summary of the results can be seen in

Table 2. As shown in the table, all protein coding gene

and miRNA targets showed a similar trend change pattern

in the expression level between pre- and post-HIIT in

qPCR and RNA-Seq analysis. Overall, all genes tested

showed a matching direction in change, whereas only two

targets exhibited discrepancy in p values between the two

techniques. Accordingly, the RNA-Seq DE results showed

a high level of consistency with qPCR, suggesting the

results from the former were valid. Further details for the

top 20 DE genes marked on Figure 1 can be viewed in

Table 3.

One crucial strategy to test the potential of scalp hair

follicles serving as a biomarker discovery system for HIIT

is to examine their capability of exhibiting well-known

HIIT molecular adaptations. As such, extensive GS analy-

sis was conducted on the protein coding gene expression

profiles from the DE analysis (Figs. 3–9). Overall, the DE

results were able to enrich a myriad of GO terms and

Figure 2. Volcano distribution for the differential expression analysis results for protein coding gene and miRNA expressions comparing pre-

and post-HIIT. Log2FC (fold change) and �log10 P values are plotted. Red represents statistically significant changes >1.5-fold. Target names are

marked for the top 20 differential expressions. (A) protein coding genes; (B) miRNA.

Table 2. The qPCR validation of the RNAseq results, with columns including gene name, exposure conditions, fold change P-values, and cor-

relation between the two methods.

RNAseq qPCR

Validated (Y or N)Gene Fold change

FDR adjusted

P-value Fold change P-value

tuba1a 0.92 0.46 0.98 0.90 Y

krt78 4.33 0.045 7.97 0.035 Y

slc2a5 3.94 0.048 1.69 0.26 N

rilpl2 10.8 0.035 2.02 0.044 Y

gpr128 11.8 0.018 2.30 0.013 Y

let-7a 0.28 0.65 1.07 0.86 Y

let-7g 4.36 0.038 1.82 0.34 N

mir-99a 0.15 0.045 0.51 0.045 Y
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KEGG between pre and posttraining, suggesting hair folli-

cle transcriptomes to be HIIT responsive. The results also

showed both up and downregulated pathways, indicating

a high versatility of the tissue. With our previous findings

(Zhang et al. 2014), it appears that the mammalian hair

follicle transcriptome is sensitive to different types of

stressors. This emphasizes the potential of utilizing hair

follicle analysis as a tool to study gene expression under

remote or austere environments, or monitor health and

performance in specialized populations including

deployed military forces, which has been an active focus

on military-related research (Hoyt et al. 2002; Reifman

et al. 2002).

Mediating various cellular and molecular processes,

and signal transduction regulations is an integral part of

the HIIT responses. Our GS analysis confirmed this was

the case in hair follicles with enriched gene sets associated

with signaling pathways and related cellular functions.

First of all, nondirectional GO BP term enrichment

showed overrepresentation of the terms such as Cell-cell

signaling, Cyclic nucleotide-mediated signaling, and Sec-

ond messenger-mediated signaling. Consistently, a range

of key molecular functions that contribute to signal trans-

duction were also enriched, including G-protein-coupled

receptor activity and Ion transmembrane transporter

activity. Additionally, the directional enrichment of the

gene sets further characterized HIIT-responsive cell signal-

ing. Specifically, BP term enrichment showed that both

G-protein-coupled receptor (GPCR) activity and G-pro-

tein-coupled binding pathways were distinctly downregu-

lated, meaning the overall effect of the DE signals

contributed to the potential supressed gene expression

involved in GPCR signaling cascades. However, for a

selection of other related GO terms, a considerable

amount of upregulated DE signals was included among

them and drove a positive directionality in the mixed

directional enrichment analysis, as seen for the BP term

G-protein-coupled receptor activity, and cAMP-mediated

signaling. The qPCR results confirmed such assessment

with the upregulated gpr128 expression comparing

between the pre- and post-HIIT groups. These results are

consistent with the reported critical and complex roles of

GPCR signaling cascades in skeletal muscle regulations

(Berdeaux and Stewart 2012; Garcia-Guerra et al. 2014).

Furthermore, several distinctly upregulated gene sets

directly connected to kinase-based cell signal transduction

cascades were revealed in both GO term and KEGG path-

way analyses. For GO BP terms, biological processes such

as posttranslation modifications, protein modification

process, protein amino acid phosphorylation, and phos-

phorylation were significantly upregulated; and the upreg-

ulation of molecular functions, including Kinase activity

and ATP binding strongly correlated with the results from

BP term enrichment. These results further confirmed the

involvement of GPCR-dependent signaling as it is also

heavily dependent on phosphorylation events (Gurevich

Table 3. Full gene name and the main function of the top 20 differentially expressed genes.

Gene name Full name Main function (databases: NCBI, UniProt)

tmem27 Transmembrane protein 27 Trafficking amino acid transporter

msln Mesothelin Cell adhesion

slc7a7 Solute carrier family 7 member 7 The light subunit of a cationic amino acid transporter

c11orf82 DNA damage-induced apoptosis suppressor Potential antiapoptotic protein

fyb FYN-binding protein T-cell receptor signaling regulator

tex37 Testis expressed 37 Potential regulator for male spermatogenesis

cd4 cd4 molecule T-cell activation initiation, or potential central nervous system mediator to

neuronal damage or disease

slc2a3 Solute carrier family 2 member 3 Glucose transporter

asmt Acetylserotonin O-methyltransferase Regulator of melatonin synthesis

kcna3 Potassium voltage-gated channel subfamily

A member 3

Potassium channel component

ac079602.1 N/A N/A

gpr128 Adhesion G-protein-coupled receptor G7 G-protein-coupled receptor

cdhr4 Cadherin-related family member 4 Calcium-dependent cell adhesion protein

abcc6 ATP-binding cassette subfamily C member 6 Member of an extra and intracellular membranes molecule transporter

mttp Microsomal triglyceride transfer protein Subunit of a heterodimeric microsomal triglyceride transfer protein

tekt3 Tektin 3 Potential roles in cytoskeleton

rilpl2 Rab interacting lysosomal protein like 2 Cellular protein transport

dmrta1 DMRT like family A1 Transcription regulation

actn2 Actinin alpha 2 Part of cytoskeleton

tmprss12 Transmembrane protease, serine 12 Protease
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et al. 2012). More importantly, the kinase-related GO

term enrichment agreed with the distinct upregulation of

phosphatidylinositol signaling system suggested in the

KEGG enrichment. Furthermore, as part of phosphatidyli-

nositol signaling system, pik3c exhibited an upregulated

expression level according to the DE results. The gene

encodes a key regulator of the PI3K-PKB pathway, which

has been proven vital to energy metabolism, cell prolifera-

tion and growth, as well as various aspects of muscle reg-

ulation (Glass 2010; Hemmings and Restuccia 2015).

Thus, it is not surprising that the pathway is closely

related to HIIT response and in particular muscle growth

(Gibala 2009). Additionally, PI3K-PKB pathway also facil-

itates fatty acid metabolism in liver and adipose tissue

upon HIIT (Marcinko et al. 2015). As such, our results

not only confirmed previous reports, but also demon-

strate that hair follicles are capable of reflecting such

responses. Moreover, the overall activation of kinase sig-

naling seen in the hair follicles might also contribute to

stress-responsive signaling pathways, such as MAPK sig-

naling, another key signal transduction cascade critical to

HIIT responses (Lu et al. 2015).

Potentially linked by the aforementioned modified cell

signal transduction, a range of metabolic and cell growth/

Figure 3. Quadrant scatter plots showing results of gene set (GS) analysis from both nondirectional and directional comparisons (five P value

classes), using both gene ontology term (A, B) and KEGG pathway (C) gene sets. The upper right quadrant includes gene sets with a median

GS P value <0.05 and were considered top ranked (i.e., a consensus score equal to or <50). The numbers indicate the quantity of enriched

gene sets, both for total and individual P classes. Figure legend title explanation: disdn – distinct down upregulation, mixdn – mixed

downregulation, nondir – nondirectional, mixup – mixed upregulation, disup – distinct upregulation.
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Figure 4. Boxplots showing the top ranked gene sets (i.e., with a consensus score equal to or small than 15) according to the consensus

scores from all eight enrichment algorithms number nondirectional p class, (A) gene ontology term biological processes enrichment, (B) GP term

molecular functions enrichment, (C) KEGG pathway.

Figure 5. Graphical visualization of the key KEGG pathways that were considered distinctly downregulated: (A) JAK-STAT signaling pathway,

and (B) Cytokine-cytokine receptor interaction. The differential expression analysis results for individual genes were shown through color masks

on the boxes sanding for the corresponding genes, with a color gradient of red to green representing decreased to increased expression levels.
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proliferation themes were also enriched in the GS analy-

sis, possibly contributing to the HIIT-responsive physio-

logical adaptations, especially in the context of muscle

regulation. Consistent with the signs of PI3K-PKB path-

way activation, a selection of metabolism-related down-

stream processes were enriched in our GS analysis. Shown

as distinct upregulations, GO BP terms such as Monocar-

boxylic acid metabolic process, Cellular protein metabolic

process, and Translation suggested activation of the pro-

tein metabolism. Additionally, distinctly upregulated

KEGG pathways, such as Ribosome and proteasome are

further indicative of the involvement of HIIT-responsive

protein metabolism in scalp hair follicles. These results

are in agreement with the findings of previous reports

showing protein metabolism is part of the muscle HIIT

responses (Gibala 2009; Pugh et al. 2015). In addition to

protein metabolism, the KEGG pathway analysis enriched

several pathways related to energy metabolism, including

upregulated Oxidative phosphorylation. The overrepresen-

tation of the oxidative phosphorylation pathway in the

post-HIIT group was consistent with a previous study

using a mouse model where HIIT-responsive regulation

of muscle respiration machinery was identified, including

ATP synthesis, enzyme activity of CS, hydrogen peroxide

production, as well as the complex V alpha-unit level

(Ramos-Filho et al. 2015). Moreover, as depicted in Fig-

ure 6B, the elevated expression level of cox might con-

tribute to such overrepresentation, and was also

consistent with previous assessment in human skeletal

muscle (Perry et al. 2008; Little et al. 2010). Beyond the

cellular respiration pathway, the GS results further sug-

gested that both carbohydrate and fatty acid metabolic

themes to be HIIT responsive in human scalp hair folli-

cles. For example, both RNA-Seq and qPCR analysis

showed an increased transcript level of slc2a5, which is

responsible for glucose transport and facilitates carbohy-

drate metabolism (Barone et al. 2009; Le et al. 2013). The

GS analysis also saw the enrichment of the PARR pathway

as a distinct upregulation with elevated transcript level of

pparc, which could potentially be involved in fatty acid

degradation in muscle and an indication of adipose tissue

development upon HIIT, as suggested previously (Hos-

hino et al. 2013a; Marcinko et al. 2015). In addition to

energy metabolism, scalp hair follicles might be able to

Figure 6. Graphical visualization of the key KEGG pathways that were considered distinctly upregulated, with (A) vascular smooth muscle

contraction, (B) oxidative phosphorylation, (C) phosphatidylinositol signaling system, and (D) peroxisome proliferator-activated receptor signaling

pathway. Other information as Figure 5.
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provide transcriptomic information with regards to cell

proliferation and growth, which are integral parts of the

HIIT-derived muscle adaptations (Gibala 2009; Pugh

et al. 2015). Interestingly, the GO term themes related to

cell proliferation exhibited enrichment in both directions,

with distinctly upregulated terms, such as Regulation of

cell proliferation, and downregulated term like Cell cycle.

These results suggest that the HIIT-responsive cell prolif-

eration regulation in hair follicle is a highly complex pro-

cess. Moreover, it appears that scalp hair follicles reflect

HIIT-associated muscle adaptations through the distinct

upregulation of the KEGG pathway Smooth muscle con-

traction (Fig. 6A). It is worth noting that a potential acti-

vation of extracellular signal–regulated kinases (ERK)

signaling (part of the MAPK cascades) was featured in

such enrichment, confirming the involvement of MAPK

signaling cascades in HIIT response. Taken together, our

results show that scalp hair follicles are capable of provid-

ing transcriptomic responses upon HIIT in the context of

energy metabolism and muscle adaptations.

The potential activation of stress signaling pathways,

such as PI3K-PKB and ERK in scalp hair follicles

Figure 7. Boxplots showing the top ranked gene sets (i.e., with a consensus score equal to or small than 15) according to the consensus

scores from all eight enrichment algorithms for gene ontology term biological processes enrichment: (A) distinct downregulations, (B) mixed

downregulations, (C) distinct upregulations, and (D) mixed upregulations.
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suggested scalp hair follicles can be an accurate surrogate

of HIIT-related stress responses (Smyth 2005; Altman and

Rathmell 2012). For example, activation of these pathways

may lead to prosurvival responses. Indeed, the DE results

exhibited increased transcript levels of prosurvival genes

including b-cell lymphoma-extra large (bcl-xl) and proto-

oncogene serine/threonine-protein kinase (pim1), indicating

HIIT-responsive antiapoptotic adaptations. Such observa-

tion has been previously reported in post-HIIT rat hearts

(Lu et al. 2015). Given its roles in regulating apoptosis

(Gibala et al. 2012; Lu et al. 2015), the aforementioned

activation of PPAR pathway might also contribute to the

HIIT-induced prosurvival responses. Consistently, both

qPCR and DE results suggested an upregulated expression

of the miRNA let-7g, which was previously demonstrated

to be responsible for inhibiting apoptosis introduced by

oxidized low-density lipoprotein (Zhang et al. 2013).

Moreover, additional stress-responsive pathways were

revealed in the KEGG pathway analysis upon HIIT. For

example, JAK-STAT pathway was identified as a distinctly

downregulated signaling pathway. While also closely

related to cell stress responses and as a prosurvival signal-

ing pathway (Rawlings et al. 2004), the current results

suggested that JAK-STAT pathway might be inhibited. As

Figure 8. Boxplots showing the top ranked gene sets (i.e., with a consensus score equal to or small than 15) according to the consensus

scores from all eight enrichment algorithms for gene ontology term molecular functions enrichment. Other information as Figure 7.
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shown in Figure 5A, the increase in the transcript levels

of pi3k and antiapoptotic genes confirmed that pathways

other than JAK-STAT might be responsible for the poten-

tial activation of the prosurvival machineries. The DE

results suggested that the potential inhibition of the path-

way could be mediated by the upstream cytokines and

hormones, as well as the core transcription factor STAT.

Such inhibition of JAK-STAT pathway might be in favor

of facilitating other aspects of HIIT responses in hair fol-

licles. In fact, it appeared that the inhibited cytokine was

featured in enriched pathways beyond JAK-STAT, with

Cytokine-cytokine interaction enriched as distinctly

downregulated KEGG pathway. These results were consis-

tent with multiple previous studies in which only moder-

ate IRs or no substantial activation of anti-inflammatory

machinery were observed upon HIIT (Zwetsloot et al.

2014; Cullen et al. 2016; Kaspar et al. 2016). Moreover,

the distinctly downregulated KEGG pathway Steroid hor-

mone biosynthesis might be the linked to the observed

inhibition of JAK-STAT associated hormone expression,

Figure 9. Boxplots showing the top ranked gene sets (i.e., with a consensus score equal to or small than 15) according to the consensus

scores from all eight enrichment algorithms for KEGG pathway enrichment. Other information as Figure 7.
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as previously reported (Gupta and Mayer 2013). The cur-

rent observations provided convincing evidence that scalp

hair follicles are strikingly capable of reflecting such HIIT

adaptations.

Accordingly, this study explored the transcriptomic

adaptations when using human scalp hair follicles as a

minimally invasive tool for the characterization HIIT. On

the basis of RNA-Seq transcriptome profiling, we used a

comprehensive bioinformatics strategy for both DE and

GS analyses to examine the capacity of the hair follicles

to exhibit well-characterized HIIT responsive molecular

events on a transcriptome level. Comparing between pre

and posttraining subjects, the present results showed that

hair follicle transcriptome indeed exhibited enrichment of

HIIT-associated biomolecular events, such as GPCR-and

kinase-mediated signal transduction, energy metabolism

and muscle adaptations, cell stress responses and survival,

as well as IR. These results are thematically consistent

with the transcriptome response in the muscle, reported

by Nishida et al. (2010).

Our DE analysis also showed adjusted expression pat-

terns for the key genes linked to the aforementioned

pathways. Additionally, the increased level of the

miRNA miR-99a also exhibited a potential hair follicle-

specific response upon HIIT, given the critical role of

the miR-99a in regulating keratinocyte differentiation

(Lerman et al. 2011). These findings indicate that the

hair follicle-specific processes were responsive to HIIT.

Based the results, the current limitations of using scalp

hair follicle as a transcriptomic biomarker mainly

resides in the varied visibility and availability of the

hair shaft for sample acquisition. Building upon the

findings of this study, future assessment can be focused

on the hair follicle transcriptome sensitivity to the

intensity and duration of the training bouts. By adding

more biological replicates, follow-up studies can also

implement higher level bioinformatics techniques such

as machine learning gene selection and classification for

a more intelligent biomarker discovery using high-

throughput datasets.

For the first time, our study presented promising

results that suggested transcriptomic profiling of human

scalp hair follicles might have the potential to serve as

both a research tool and transcriptomic biomarker dis-

covery source for HIIT.
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